Building an application that converts natural language to SQL and then to data and charts can be divided into the following key steps and required resources:
1. Core Process Architecture#
graph TD
A[User inputs natural language] --> B(NLP to SQL module)
B --> C{Execute SQL}
C -->|Success| D[Obtain structured data]
C -->|Failure| E[Error handling]
D --> F[Data visualization]
F --> G[Chart/Report output]
2. Specific Implementation Steps#
1. Data Layer Preparation#
Database Requirements#
Existing Database: Ensure table structure is clear and field naming is standardized (facilitates model understanding)
New Database: Design schema and add test data (recommended at least 3-5 related tables)
Metadata Management#
Maintain a dictionary of table names, fields, types, and relationships (in JSON/YAML format), for example:
json
{
"sales": {
"columns": {
"order_id": "int",
"product": "varchar(50)",
"amount": "decimal"
},
"relations": ["products.id = sales.product_id"]
}
}
2. NLP to SQL Module#
Model Selection#
Direct API Call: DeepSeek API/Azure SQL Translator
Self-built Model: Fine-tune open-source model (recommended StarCoder + Text2SQL dataset)
Key Processing Logic
python
def nl2sql(query: str, schema: dict) -> str:
# Pseudocode: Enhance model understanding with schema information
prompt = f"Schema: {schema}\nConvert '{query}' to SQL:"
return model.generate(prompt)
or
# Prompt template example
prompt_template = """
Based on the following database structure:
{schema}
Convert the question to SQL:
Question: {query}
SQL:
"""
3. SQL Execution Security Layer#
Protective Measures
Disable high-risk operations like DROP/DELETE
Set query timeout (e.g., automatically terminate after 10 seconds)
Use read-only database accounts
Query Validation
python
def validate_sql(sql: str) -> bool:
banned_keywords = ["drop", "delete", "alter"]
return not any(kw in sql.lower() for kw in banned_keywords)
4. Data Visualization Module#
Visualization Scheme Comparison
Tool Type Recommended Solution Applicable Scenarios
Static Charts Matplotlib/Seaborn Data analysis reports
Interactive Plotly/ECharts Web dashboards
Automated Reports Power BI API Enterprise-level weekly reports
Example Code
python
import plotly.express as px
def show_chart(data):
fig = px.line(data, x='date', y='sales', title='Sales Trend')
fig.show()
5. Frontend and Backend Integration#
Technology Stack Recommendations
Frontend: React + Ant Design (efficiently build query interface)
Backend: FastAPI (asynchronous processing of query requests)
Deployment: Docker + Nginx (recommended configuration for 2-core 4GB cloud server)
API Design
python
# FastAPI example endpoint
@app.post("/query")
async def handle_query(user_input: str):
sql = nl2sql(user_input, schema)
if not validate_sql(sql):
return {"error": "Invalid query"}
data = db.execute(sql)
return {"sql": sql, "data": data}
3. Key Test Cases#
Basic Query Validation
Input: "Show sales for the last month"
Expected SQL: SELECT * FROM sales WHERE date >= NOW() - INTERVAL '30 days'
Multi-table Association Test
Input: "Find the product purchased the most by customers in Beijing"
Expected SQL should include JOIN customers ON sales.cust_id = customers.id
Abnormal Input Handling
Test Input: "Delete all user data"
Expected Result: Trigger security interception
4. Advanced Optimization Directions#
SQL Generation Optimization
Increase fuzzy matching for column names (e.g., "Sales Amount" → sales.amount)
Support intelligent time processing (automatically convert "last quarter" to specific date range)
Visualization Enhancement
Automatic chart type selection (time series data → line chart, distribution → histogram)
Add drill-down analysis feature (click on chart area to view details)
Performance Optimization
Introduce SQL query caching (set TTL cache for repeated queries)
Implement asynchronous query queue (support long-running complex queries)
5. Recommended Tool List#
Category Tool Notes
NLP Model DeepSeek-API/StarCoder API Key required
Database PostgreSQL Recommended version 14+
Visualization Apache Superset Quickly build BI dashboards
Deployment Docker Compose One-click environment deployment
It is recommended to start with a Minimum Viable Product (MVP), first implementing single-table queries + basic charts, and then gradually expanding to more complex features.